- 1. Funzione esponenziale e logaritmica Antonio Bernardo
- 2. Espressioni con i logaritmi Antonio Bernardo
- 3. Semplici Espressioni con i logaritmi $log_3 81; log_7 49; log_2 32; log_4 64$... Antonio Bernardo
- 4. Espressioni con i logaritmi: $log_3 (9 sqrt(3))$; $log_2 (16 * 2^9 * sqrt(2))$; $log_4(root(3)(4) * 4^5)$; ... Antonio Bernardo
- 5. Espressioni con i logaritmi: $log_2 (4 root(10)(2))$; $log_3 9(1/3 root(4)(27))$; $log_5 25/sqrt(5) (5^3 * root(4)(5))$ ; ... Antonio Bernardo
- 6. Equazioni esponenziali Antonio Bernardo
- 7. Esercizi sulle equazioni esponenziali di base Antonio Bernardo
- 8. Esercizi sulle disequazioni esponenziali Antonio Bernardo
- 9. $2*3^(x+2) -216*2^(x-3)=0$ Antonio Bernardo
- 10. $6^(2-x) *3^(x+1)=864$ Antonio Bernardo
- 11. $7^(x+2) * 7^(x-3) = 343$; $5^(x^2-5x+7) = 125$ Antonio Bernardo
- 12. $(3^(x+1))^(x-2) * 9^(3x+2)=81^(x+2)$ Antonio Bernardo
- 13. $9*3^(2x)-82*3^x+9=0$ Antonio Bernardo
- 14. $4^x-3^(x-1/2)=3^(x+1/2)-2^(2x-1)$ Antonio Bernardo
- 15. $x^2 * 2^(x+1)+2^(|x-3|+2) = x^2 * 2^(|x-3|+4)+2^(x-1)$ Antonio Bernardo
- 16. $4*2^3x-16*2^(2x)-2^x+4=0$ Antonio Bernardo
- 17. $(1/2)^(2x+1)-(1/2)^(x-2)+6=0$ Antonio Bernardo
- 18. $4^x-2^(2x+1)=2^(2x-1)-6$ Antonio Bernardo
- 19. Disequazioni esponenziali Antonio Bernardo
- 20. $2^x >=(3^(x+3))/8$ Antonio Bernardo
- 21. $4^(x/2 +1)-2^(x-1)>56$ Antonio Bernardo
- 22. $(2^x-1)/(9^x-3)>=0$ Antonio Bernardo
- 23. $3(1/9)^x -26 (1/3)^x>9$ Antonio Bernardo
- 24. $(3^(x+1)-1)/(3*4^x -2^x)>0$ Antonio Bernardo
- 25. $x^2+2^x>4$ con risoluzione grafica Antonio Bernardo
- 26. $2^x > 1-2x $ con risoluzione grafica Antonio Bernardo
- 27. $2^x+3^x > 4 $ risoluzione grafica Antonio Bernardo
- 28. $1/2 log(x+8) + 1/2 log x = log 3$ Antonio Bernardo
- 29. $log_2 (x-2)+log_2 x = log_2 (9-2x)$ Antonio Bernardo
- 30. $log_3 (2x+4)=2$ Antonio Bernardo
- 31. $2log_3 (2x-3)=log_3 (x-1) +log_3 (x+1)$ Antonio Bernardo
- 32. $log_2 (2x+17)-log_2 (x+10)=log_2 (-x-4)-3$ Antonio Bernardo
- 33. $log(2-3^x)+log3^x = 2x log3$ Antonio Bernardo
- 34. $2+1/(log_(1/2) x) -3 log_(1/2) x = -7/2$ Antonio Bernardo
- 35. $1/2 log x +1/2 log (3x+5) = 1 $ Antonio Bernardo
- 36. $(logx+5)/(logx+2)-2/5 (logx+5)=-2/5$ Antonio Bernardo
- 37. $x^(logx)=10$ Antonio Bernardo
- 38. $x^(3log^3x-2/3 logx)=100 root(3)(10) Antonio Bernardo
- 39. ${(logx+logy=1),(x+y=7):}$ Antonio Bernardo
- 40. $x^2-3x+2-lnx=0$ Antonio Bernardo
- 41. $3^(x-1) = 7^(1+x)$ Antonio Bernardo
- 42. $log_3 x -2/3 log_x 3 = 5/6 -1/2 log_9 x^2$ Antonio Bernardo
- 43. $x*log_2 x =2 $ Antonio Bernardo
- 44. $log |x|=1-x^2$ Antonio Bernardo
- 45. $log_2 x >4$ Antonio Bernardo
- 46. $2log_3 x >1$ Antonio Bernardo
- 47. $log_(1/2) (x-2)-log_2 x >0$ Antonio Bernardo
- 48. $log_(2/3)^2 (x+3)-log_(2/3) (x+3)=2$ Antonio Bernardo
- 49. $log_3 (log_2 (x-1))>1$ Antonio Bernardo
- 50. $sqrt(log_a (x^2-1)) > sqrt(log_a (2x+1))$ Antonio Bernardo